Let m1,m2,...,mr∈Z be integers greater than 1 that are pairwise co-prime. Let a1,a2,...,ar∈Z, then the system,
x≡a1(modm1)
x≡a2(modm2)
...
x≡ar(modmr)
admits a unique solution (modm1⋅m2⋅...⋅mr)
Example
Consider the following linear congruences:
x≡2(mod3)
x≡3(mod5)
x≡5(mod7)
Therefore, m=m1⋅m2⋅m3=105.
For b1:m1m⋅b1≡1(modm1)
35⋅b1≡1(mod3)=2⋅b1≡1(mod3)
b1≡2(mod3)
For b2:m2m⋅b2≡1(modm2)
21⋅b2≡1(mod5)=b2≡1(mod5)
For b3:m3m⋅b3≡1(modm3)
15⋅b3≡1(mod7)=b3≡1(mod7)
x=m1m⋅b1⋅a1+m2m⋅b2⋅a2+m3m⋅b3⋅a3
x=140+63+75=278
x=68(mod105)