Resolving Congruences

Linear Congruence

axb(modm)ax \equiv b \pmod{m}

If we find a multiplicative inverse aˉ\bar{a} to a(modm)a \pmod{m}, i.e. aˉa1(modm)\bar{a}\cdot a \equiv 1 \pmod{m}, then axb(modm)ax \equiv b \pmod{m} becomes xaˉb(modm)x \equiv \bar{a}\cdot b \pmod m

Theorem

Let a,mZa,m \in \Z with m2m\geq 2. If gcd(a,m)=1gcd(a,m) = 1, then the inverse of a(modm)a \pmod{m} exists and is unique.