Vectors

Definition

A vector is an object that has both a magnitude and a direction. Geometrically, we can picture a vector as a directed line segment, whose length is the magnitude of the vector and with an arrow indicating the direction. A unit vector is a vector with magnitude 1 and any argument value. A vector is denoted as u\overline{u} or u\overrightarrow{u}.

Dot Product

uv=u1v1+u2v2+...+unvn=uvcosθ\overrightarrow{u} \cdot \overrightarrow{v} = u_1v_1+u_2v_2 + ... + u_nv_n = |\overrightarrow{u}||\overrightarrow{v}|\cos\theta

  • dot product only works with two vectors

Properties

If uv=\overrightarrow{u} \cdot \overrightarrow{v} =

  • 00, uv\overrightarrow{u} \perp \overrightarrow{v}
  • <0< 0, argument/angle is obtuse
  • >0> 0, argument/angle is acute
  • 11, the two vectors are parallel
  • 1-1, parallel and in opposite directions

Projection

projuv=uvuvuproj_{\overrightarrow{u}}^{\overrightarrow{v}} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{u} \cdot \overrightarrow{v}}\overrightarrow{u}

Cross Product

  • v×w=vwsinθ||\overline{v} \times \overline{w}|| = |\overline{v}||\overline{w}|\sin\theta
  • u×v=v×u\overline{u} \times \overline{v} = -\overline{v} \times \overline{u}
  • u×vu\overline{u} \times \overline{v} \perp \overline{u} and v\overline{v}

Parallelepiped

  • volume = u(v×w)|\overline{u}\cdot(\overline{v}\times\overline{w})|

Distance

  • point to plane projpPQ=\Rightarrow ||proj_{\overline{p}}\overrightarrow{PQ}|| = PQpp|\frac{\overrightarrow{PQ}\cdot\overline{p}}{||\overline{p}||}