Definition A vector is an object that has both a magnitude and a direction. Geometrically, we can picture a vector as a directed line segment, whose length is the magnitude of the vector and with an arrow indicating the direction. A unit vector is a vector with magnitude 1 and any argument value. A vector is denoted as u ‾ \overline{u} u or u → \overrightarrow{u} u .
Dot Product u → ⋅ v → = u 1 v 1 + u 2 v 2 + . . . + u n v n = ∣ u → ∣ ∣ v → ∣ cos θ \overrightarrow{u} \cdot \overrightarrow{v} = u_1v_1+u_2v_2 + ... + u_nv_n = |\overrightarrow{u}||\overrightarrow{v}|\cos\theta u ⋅ v = u 1 v 1 + u 2 v 2 + . . . + u n v n = ∣ u ∣ ∣ v ∣ cos θ
dot product only works with two vectors Properties If u → ⋅ v → = \overrightarrow{u} \cdot \overrightarrow{v} = u ⋅ v =
0 0 0 , u → ⊥ v → \overrightarrow{u} \perp \overrightarrow{v} u ⊥ v < 0 < 0 < 0 , argument/angle is obtuse> 0 > 0 > 0 , argument/angle is acute1 1 1 , the two vectors are parallel− 1 -1 − 1 , parallel and in opposite directionsProjection p r o j u → v → = u → ⋅ v → u → ⋅ v → u → proj_{\overrightarrow{u}}^{\overrightarrow{v}} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{u} \cdot \overrightarrow{v}}\overrightarrow{u} p r o j u v = u ⋅ v u ⋅ v u
Cross Product ∣ ∣ v ‾ × w ‾ ∣ ∣ = ∣ v ‾ ∣ ∣ w ‾ ∣ sin θ ||\overline{v} \times \overline{w}|| = |\overline{v}||\overline{w}|\sin\theta ∣ ∣ v × w ∣ ∣ = ∣ v ∣ ∣ w ∣ sin θ u ‾ × v ‾ = − v ‾ × u ‾ \overline{u} \times \overline{v} = -\overline{v} \times \overline{u} u × v = − v × u u ‾ × v ‾ ⊥ u ‾ \overline{u} \times \overline{v} \perp \overline{u} u × v ⊥ u and v ‾ \overline{v} v Parallelepiped volume = ∣ u ‾ ⋅ ( v ‾ × w ‾ ) ∣ |\overline{u}\cdot(\overline{v}\times\overline{w})| ∣ u ⋅ ( v × w ) ∣ Distance point to plane ⇒ ∣ ∣ p r o j p ‾ P Q → ∣ ∣ = \Rightarrow ||proj_{\overline{p}}\overrightarrow{PQ}|| = ⇒ ∣ ∣ p r o j p P Q ∣ ∣ = ∣ P Q → ⋅ p ‾ ∣ ∣ p ‾ ∣ ∣ |\frac{\overrightarrow{PQ}\cdot\overline{p}}{||\overline{p}||} ∣ ∣ ∣ p ∣ ∣ P Q ⋅ p