Number Theory

Definition

Let aa and bb be two integers such that a0a \neq 0. We say that aa divides bb if there exists an integer cc such that b=acb= ac If aa divides bb, we say that aa is a factor or a divisor of bb. We can say also that bb is a multiple of aa.

Notation: aba|b means aa divides bb. aba \nmid b means aa does not divide bb

Theorem 1

Let a,b,cZa,b,c \in \Z with a0a \neq 0.

  1. If aba|b and aca|c then a(b+c)a|(b+c)
  2. If aba|b, then abca|bc for every integer cc
  3. If aba|b, and bcb|c, then aca|c.

Proof

Prove if aba|b and aca|c then a(b+c)a|(b+c):

Let a,b,cZa,b,c \in \Z with a0a \neq 0. Assume that aba|b and aca|c. Then we have:

b=asb = as for some integer ss,
c=atc = at for some integer tt

Thus we have:
b+c=as+at=a(s+t)b + c = as+at = a(s+t),

in other words a(b+c)a|(b+c).

Corollary

Let a,b,cZa,b,c \in \Z with a0a \neq 0. If aba|b and aca|c then a(mb+nc)a|(mb+nc) for all integers mm and nn.

Theorem 2 - Division Algorithm

Let a,dZa,d \in \Z with d>0d > 0. There exists unique integers qq and rr such that:

  • 0a<d0 \leq a < d
  • and a=dq+ra = dq + r

We write:

  1. q=a div dq = a \ div \ d
  2. r=amod dr = a\bmod\ d

Definition - Modulus

Let a,b,mZa,b,m \in \Z with m2m \geq 2. We say that aa is congruent to bb modulo mm is m(ab)m|(a-b). We write ab(modm)a \equiv b \pmod{m}.

Theorem 3

Let a,b,c,d,mZa,b,c,d,m \in \Z with m2m \geq 2. If ab(modm)a \equiv b (mod m) and cd(modm)c \equiv d (mod m), then

  1. a+cb+d(modm)a+c \equiv b+d\pmod{m}
  2. acbd(modm)ac \equiv bd\pmod{m}

Arithmetic Modulo

Let m2m\geq 2 be an integer and Zm=0,1,2,...,m1\Z_m = {0,1,2,...,m-1}.

We define

  • a+ mb=(a+b)(modm)a + \ _mb = (a+b) \pmod{m}
  • a mb=(ab)(modm)a\cdot \ _mb = (a\cdot b) \pmod{m}

This structure satisfies several properties: Closure, Associativity, Commutativity, Identity elements, Additive & Multiplicative inverses, Distributivity